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Abstract

The statistical theory of temporary polymer networks is an effort of describing the macroscopic behavior of such

networks based on molecular behavior analysis. The calculation of the stress tensor of a network and the satisfactory

comparison with experimental viscosity results was shown before [Rheol. Acta 28 (1989) 193]. Here we present the

foresights of the theory as regards flow birefringence. The polarizability tensor is calculated first and then the bire-

fringence of a four-functional temporary polymer network is estimated for a stationary simple shear flow. The de-

pendence of the calculated quantities on shear rate is in line with existing experimental evidence. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

A temporary polymer network, i.e. a network whose

junctions form and decay, shows increased mobility

compared with a permanent network in which the junc-

tions are fixed. Kroener and Takserman-Krozer ([2])

developed a molecular-statistical theory of temporary

polymer networks in solution in order to describe quan-

titatively the dynamic behavior of such a network. It

must be mentioned that the extra mobility of the network

gives rise to a viscoelasticity, which is nonlinear [1,2].

The result of the above theory was the formulation of

the generalized Kirkwood diffusion equation––an inte-

gro-differential equation [2]. The diffusion equation was

treated within the relaxation time approach, so it be-

came a (high-dimensional) differential equation
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ri � ð _~rr~rriW Þ ¼ ��ppðW � WeqÞ ð1Þ

where

• W ¼ W ð~RR; Z;M ; tÞ is the nonequilibrium proba-

bility density function for the state [~RR; Z;M ] at

time t. W changes in time because, (i) the net-

work flows (left-hand side of Eq. (1)) and (ii) because

junctions deform and decay (right-hand side of

Eq. (1)).

• ~RR ¼ f~rrig (i ¼ 1,2, . . . M) is the configurational posi-

tion vector for the junctions.

• Z ¼ fzijg denotes the chains connecting the neighbor-

ing junctions i and j. In the model (four-functional

network) there are M junctions and 2M chains con-

necting them.

• M is the number of junctions per volume V.

• Weq is the equilibrium probability density func-

tion.

• �pp ¼ �ppð~RR; ZÞ 

R R

pð~RR; Z ! ~RR0; Z 0Þd~RR0 dZ 0 is the prob-

ability per unit time that the configuration (~RR, Z) will
decay into any other configuration.

• _~rr~rri is the velocity of the ith junction, obeying a Lange-

vin equation as given in Refs. [2,3]. The forces in-

cluded in this equation are the elastic forces (trans-

mitted through the chains), the frictional forces

between polymer and solvent and the statistical en-

tropy forces of Brownian motion.
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Assuming that (i) the density of decay processes is

not too high in space and time and (ii) we can replace

�pp(~RR, Z) with �pp(h~RRieq, Z) where the brackets h i denote the
ensemble average, the stress tensor p of the network was

calculated [2,4], which according to Giesekus [5] is given

by the relation

p ¼ NAc
M

XM
i0

ki0 h~ssi0 ;~ssi0 iS ð2Þ

where

• NA is the Avogadro–Loschmidt number.

• c is the mass concentration of the polymer.

• M is the molecular weight of the polymer.

• ki0 are the eigenvalues of the elastic matrix j, whose
elements jij are functions of the spring constants kij
of the chain connecting the junctions i and j [4].

For a linearized elasticity they are given from a

known formula of Volkenstein [6] and Flory [7].

• ~ssi are the eigenvectors belonging to the vibrating sys-

tem of junctions and elastic springs between them.

• h~ssi0~ssi0 iS are the so-called second moments in the mode

representation of the vibrating molecular network.

Their calculation was done by a standard procedure

from the diffusion equation, after this equation was

transformed to normal modes [1,2,4].

The numerical processing of these equations was

done by an extensive computer program [4]. The calcu-

lated forms for the simple shear flow viscosity functions

g 
 pxz=q and n 
 ðpzz � pxxÞ=q2, where q is the shear

rate, were found to satisfactorily describe the experi-

mental data. This concerned both the stationary [3,4]

and the nonstationary flow [1] of polystyrene solution in

toluene. The quantitative agreement between model

predictions and experimental observations was consid-

ered as evidence of the accurate theoretical estimation of

p for that polymeric system.

In the present paper we show that the aforemen-

tioned theory gives good results also for the birefrin-

gence values and the extinction angle of temporary

polymer networks in steady shear flow. This is so be-

cause the decisive parameter for the determination of

these quantities is once more the stress tensor p of

the network (see later). Indeed, it is rather common

knowledge that birefringence is directly related to vis-

cosity [12]. On the other hand, the calculation of p is

also the major shortcoming of the theory since it

requires simultaneous knowledge of the limiting viscosity

functions g0 ¼ limq!0 g and n0 ¼ limq!0 n. At present

these quantities are not trivial to obtain and for this

reason they are not available for most polymeric solu-

tions. This fact greatly diminishes the extent of usable

experimental data to compare with.

2. Basic conceptions

One of the most commonly used methods for ex-

ploring the molecular structure in liquids is the study of

birefringence which the liquid exhibits under an external

electric or magnetic field. However, concerning the case

of a polymer with flexible macromolecules the above

method is not effective [8]. When birefringence is in-

duced via mechanical forces like the shear stresses in a

laminar flow (‘‘Maxwell-dynamo-optic effect’’) the situ-

ation is substantially different. Such a flow birefringence

of a polymer solution is a function of the geometrical,

mechanical and optical properties of the solute macro-

molecules [9,10,11,12]. It is apparent that flow birefrin-

gence can provide direct information about dimensions

and structure of the macromolecules.

The birefringence values are defined as the differences

between the principal refractive indexes n1, n2 and n3:

D1 
 n2 � n3 ð3Þ

D2 
 n3 � n1 ð4Þ

D3 
 n1 � n2 ð5Þ

It can be seen that only two of the above quantities are

independent of each other since D3 ¼ �D2 � D1. Espe-

cially in the case of a coaxial specimen (i.e. a specimen

for which the orientation of the structural elements

shows a cylindrical symmetry around a characteristic

direction), two of the principal refractive indexes are

equal to each other. Thus, a single value of birefringence

can describe the specimen’s birefringence.

The relation between the refractive index and specific

polarizability P (polarizability of the unit volume) can

be described by the well known Lorentz–Lorentz law of

classical electrodynamics. This relation rigorously ap-

plies only to perfectly isotropic materials but has been

extensively used also in the field of polymeric solutions

as an adequate approximation, [10,11]. This is because

most of polymeric solutions behave isotropically under

small shear rates. This equation is:

n2 � 1

n2 þ 2
¼ 4p

3
P ð6Þ

Differentiation of Eq. (6) results in [13]:

6n

ðn2 þ 2Þ2
dn ¼ 4p

3
dP ð7Þ

If the difference between the principal refractive in-

dexes is small enough we can replace dn and dP in

Eq. (7) by Dn and DP , respectively. Then Eq. (7) be-

comes, for instance,
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D2 
 n3 � n1 ¼
2p
9

n2 þ 2ð Þ2

n
ðP3 � P1Þ ð8Þ

Eq. (8) gives the dependence of birefringence on the

corresponding difference of specific polarizability. In this

equation, n is the usual refractive index of the nonfa-

tigued material.

The anisotropy of polarizability is related to the

anisotropic distribution of structural elements, which

are also anisotropic. Below we present the derivation

of a quantitative expression for the anisotropy of po-

larization in the case of a four-functional polymer net-

work.

3. Polarizability tensor of a four-functional polymer

network

We consider a four-functional network [2,4], con-

sisting of junctions M and 2M chains. The two polar-

izability components, cjjij and c?ij , of a ij chain, parallel

and perpendicular to the end-to-end vector ~hhij ¼~rrj �~rri,
are given by the equations [14]:

ckij ¼ g þ 2fijh2ij ð9Þ

c?ij ¼ g � fijh2ij ð10Þ

where

g ¼ N
3

a1ð þ 2a2Þ ð11Þ

fij ¼
1

5

a1 � a2ð Þ
5hh2ijieq

ð12Þ

In the above equations

• a1 and a2 are the polarizability components parallel

and perpendicular to the statistical ‘‘Kuhn-segments’’.

According to the above, it must be particularly

stressed that while it is allowed for the statistical seg-

ments to have different lengths, it is also presupposed

that all segments have the same anisotropy (a1 � a2).

So, the magnitude (a1 � a2) becomes a very impor-

tant microstructural characteristic of the polymer.

It could be argued that the difference (a1 � a2) repre-

sents an estimated mean value for all the statistical

segments. The magnitude (a1 � a2) has been already

experimentally determined for a series of polymers,

[15].

• N is the number of statistical segments from which

a macromolecule is constituted. It has an unknown

magnitude but this is not a problem because it does

not appear in the final result.

• hh2ijieq represents the mean value of the end-to-end

vector’s square in equilibrium (relaxing fluid).

According to Eqs. (9)–(12) the polarizability tensor c
ij

of the chain ij is given (in regular form) from the fol-

lowing relation:

c
ij
¼ g

�
� fijh2ij

�
I þ 3fij

0 0 0
0 0 0
0 0 h2ij

0
@

1
A ð13Þ

where I is the unitary tensor.

The polarizability tensor P of the whole four-func-

tional network arises by summing the polarizabilities of

all chains:

P ¼
X2M
ðijÞ

c
ij
¼ 1

2

XM
i

X4

a

c
ia

ð14Þ

If we bring the polarizabilities c
ij
and c

ia
to a Cartesian

coordinates system (x, y, z) and calculate the mean value

P of the polarizability tensor P , we end up with:

P 
 hP i

¼ M g
	

� fij


I þ 3f

hxTjxi hxTjyi hxTjzi
hyTjxi hyTjyi hyTjzi
hzTjxi hzTjyi hzTjzi

0
B@

1
CA ð15Þ

where f ¼ 1

15

a1 � a2ð Þ
kBT

; ð16Þ

kB is the Boltzmann’s constant and T is the absolute

temperature.

When deriving Eq. (15), it is assumed that all mean

values hh2ijieq are equal for all chains (due to the isotropy

of the polymer network in the equilibrium state). In Eq.

(15) the following formalism is used:

x ¼

x1
x2
..
.

xM

0
BBB@

1
CCCA; y ¼

y1
y2
..
.

yM

0
BBB@

1
CCCA; z ¼

z1
z2
..
.

zM

0
BBB@

1
CCCA ð17Þ

It must be noted that Eq. (15) is in qualitative agreement

with Zimm’s relation [16,17], which however, is valid for

very dilute solutions, where the polymer is in isolated

macromolecules form. The apparent resemblance be-

tween Eq. (15) and other equations derived in the past

for polymer solutions and networks is due to the similar

derivation procedures which are, virtually, alternatives

of the same ‘‘spring and bead model’’ [5,17]. That is, all

studies start from the equations of Kuhn and Gruen

(Eqs. (9)–(12); [14]) which describe the polarizabilty

components of a single chain and after summing up over

all possible springs obtain the total polarizabilty of the

network. The present analysis manages to explicitly in-

corporate in Eq. (15) the elastic matrix (j), character-
istic of a four-functional network without open ends.

This matrix does not only describe the topology of the
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network, as for instance Zimm’s relation does, but also

determines quantitatively the elastic forces between junc-

tions i and j through a chain ij [4]. So, Eq. (15) demo-

nstrates on a microscopic scale how birefringence is

induced via mechanical forces like the shear stresses in a

laminar flow (‘‘Maxwell-dynamo-optic-effect’’).

Eq. (15) is going to be used in conjunction with Eq.

(8) to determine the birefringence and extinction angle

values. Next, we will show the significance of the above

relation in the case of a simple shear flow.

4. Flow birefringence in simple shear flow

The case of a laminar flow described by a velocity

gradient tensor has the following form in Cartesian co-

ordinates:

q ¼ q
0 0 1
0 0 0
0 0 0

0
@

1
A ð18Þ

According to the above, characterized as simple shear

flow the z-axis coincides with the flow direction, while

the x-axis coincides with the velocity gradient direction.

Then, as it is customary for birefringence experiments,

the y-axis is the observation direction.

During an experimental procedure, the refractive

indexes difference Dn ¼ n3 � n1 of the specimen is of

interest. Here, n3 and n1 are the refractive indexes for a

parallel and a perpendicular to the optical axis polarized

ray respectively. The corresponding difference DP be-

tween the fundamental polarizabilities, which, according

to Eq. (8), determines the birefringence value, arises

from table diagonalisation in Eq. (15):

DP ¼ 3f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hzTjzi � hxTjxið Þ2 þ 4hzTjxi2

h ir
ð19Þ

Inserting, in the above, the extinction angle (v)
(which is the smallest angle between flow direction and

optical axis), yields:

tan 2v ¼ 2hzTjxi
hzTjzi � hxTjxi ð20Þ

After some elementary algebra, the relation for DP be-

comes:

DP ¼ 3f
2hzTjxi
sin 2v

ð21Þ

By substituting Eq. (21) in Eq. (8) the following arises

for the value of birefringence:

Dn ¼ 4p
45kBT

ðn2 þ 2Þ2

n
a2ð � a1Þ

NAc
M

hzTaxi
sin 2v

ð22Þ

For the derivation of Eqs. (20) and (22) the only as-

sumption is about the isotropy of the network which

leads to a progressively poorer accuracy as the shear rate

increases. Apart from that, the accuracy of predictions is

satisfactory inasmuch as the model of a four-functional

temporary polymer network describes adequately the

actual behavior of polymer solutions. There is evidence

that this is the case for moderate polymer concentrations

as those employed in the present study [1,4].

In order to include some physically meaningful

variables in Eqs. (20) and (22), a further transformation

is performed. The stress tensor p of a polymer network

is given by the following relation [4]:

p ¼ NAc
M

hRTjRi ð23Þ

where R ¼

r1
r2
..
.

rM

0
BBB@

1
CCCA ð24Þ

ri (i ¼ 1; 2; . . .M) is the position vector of junction i.

Using the above relations and after some elementary

considerations we can rewrite Eqs. (20) and (22) in the

following form:

tan 2v ¼ 2
pxz

pzz � pxx
ð25Þ

Dn ¼ 4p
45kBT

ðn2 þ 2Þ2

n

� a1ð � a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pzz � pxxð Þ2 þ 2pxzð Þ2

q
ð26Þ

Eqs. (25) and (26), can be viewed as a realization of the

‘‘photoelastic stress analysis’’. A meticulous survey of

the pertinent literature reveals that the available exper-

imental data on the limiting viscosity functions, g0 and

n0, for polymer networks is scanty. This is more so if one

requires knowledge of both functions for the same ma-

terial. As a matter of course, either one of g0 or n0 is

known for most materials. Furthermore, we were not

able to locate even a single polymer solution for which

both the limiting viscosity functions and also data on

flow birefringence or extinction angle are available. On

this account, it was decided to proceed by comparing the

theoretical predictions for a system of known rheology

against experimental birefringence and extinction angle

data for other polymeric systems. The foundation for

doing so is that polymer networks of ordinary (statis-

tical) degrees of functionality are quite prone to a similar

qualitative molecular behavior under simple shear flow

[4].

Eqs. (25) and (26) are employed next to investi-

gate the case of a polystyrene solution in toluene for

different mass concentrations and molecular weights of

the polymer. To do so, the required components of the

stress tensor are taken from [4]. The results are presented
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in Figs. 1–4. In Figs. 1 and 3, comparisons are made

against experimental evidence of Dn and v for other

polymer solutions that has been very recently presented

in literature, Table 1. The use of modern instrumenta-

tion by those studies allows confidence regarding the

reliability of measurements. The typical experimental

Fig. 1. Estimated birefringence value (Dn) vs shear rate (q) for a simple shear flow of a 15%, 20% and 25% solution of polystyrene in

toluene (M ¼ 670000). Numbered lines refer to data sets in Table 1.

Fig. 2. Estimated birefringence value (Dn) vs shear rate (q) for a simple shear flow of a 10%, and 12.5% solution of polystyrene in

toluene (M ¼ 1860000).
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error in such measurements is around 10% [12]. These

data span a wide variety of materials of different mo-

lecular weight, concentration and character (solutions,

melts) and exhibit a positive birefringence. For clarity in

the presentation, past data in Figs. 1and 3 are shown in

the form of best-fit lines through measurements (statis-

tically confident to 95% level).

For very small shear rates, q � 10�2 s�1, the bire-

fringence Dn, equals practically to zero (< 10�9) (Figs. 1

and 2), and the extinction angle v is approximately 45�
(Figs. 3 and 4). These values obtained at very small q

manifest the isotropy of the network in the relaxation

state. Affinity for such small values have been repeatedly

observed in past experiments for several polymeric net-

works, e.g. Refs. [18–20]. The same behavior was re-

ported also in earlier studies, e.g. Refs. [8,17,21]; and is

an essential initial condition for the successful perfor-

mance of any theoretical model.

Fig. 3. Estimated extinction angle (v) vs shear rate (q) for a simple shear flow of a 15%, 20% and 25% solution of polystyrene in toluene

(M ¼ 670000). Numbered lines refer to data sets in Table 1.

Fig. 4. Estimated extinction angle (v) vs shear rate (q) for a simple shear flow of a 10%, and 12.5% solution of polystyrene in toluene

(M ¼ 1860000).
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At a fixed shear rate (q) and molecular weight (M),

Dn increases with increasing mass concentration (c)

(Figs. 1 and 2). The same trend is observed in data sets 1

and 2 [19] and is also reported by Pavlov et al. [12]. In

addition, at a fixed shear rate and mass concentration, it

can be easily inferred from the same figures that Dn in-

creases also with molecular weight. The same behavior is

acknowledged by data sets 3, 4, 5 and 6 [19]. The op-

posite trends are observed for the extinction angle (Figs.

3 and 4). On the whole, such trends are rather expected

on physical grounds and are in line with experiments

conducted with other polymeric solutions [12,19].

Already for qP � 10�2 and up to q6 � 102 s�1, Dn
increases linearly with respect to q due to the progres-

sively increasing orientation of the network chains. This

is displayed in the log–log plots of Figs. 1 and 2 and is

in accord with experimental results for other polymer

networks [18–20]. The lower the mass concentration of

the polymer the higher the shear rate value up to where

the linear behavior is valid.

The extinction angles decay in a monotonous fash-

ion, too (Figs. 3 and 4). However, the shape of the v
curves differs from the Dn curves as expected from Eq.

(25). As with Dn, the experimental data shown in Fig. 3

have certain features in common with predictions. They

decay monotonously with q within a comparable range

of values and at comparable rates.

For very large shear rates (qP 103 s�1) a saturation

state is predicted, independent from mass concentration

and molecular weight, at least for the examined range of

parameters. This is clearly manifested by the gradual

leveling-off of both Dn and v predictions towards

somewhat constant values. This is in qualitative accor-

dance with recent experiments displayed in Fig. 3 [20],

where especially for v the measurements present a pro-

gressive leveling-off as q increases. Earlier evidence by

Fuller and Leal [21], showed also a similar behavior.

5. Conclusions

This work provides evidence that the molecular-

statistical theory originally developed by Kroener and

Takserman-Krozer [2] constitutes a useful tool for esti-

mating the birefringence and extinction angle of a four-

functional temporary polymer network under simple

shear flow. Estimations are based on the stress tensor

calculated from the above theory and an appropriate

expression derived for the polarizability tensor of the

network. At present, the lack of information in literature

as regards certain limiting viscosity data necessary to

calculate the stress tensor of polymeric solutions, ham-

pers the rigorous quantitative assessment of the model

predictions against experimental data for the same

material. Yet, the qualitative agreement between the

experimentally observed behavior and model predictions

for different polymer networks is a strong indication that

the model has the potential to satisfactorily describe the

phenomena occurring in these networks. The most

profound of these features are the dependence of bire-

fringence and extinction angle on molecular weight and

concentration, the linear increase of birefringence with

shear rate for an intermediate range of shear rates

(�10�2 s�1 < q <�102 s�1) and the tendency for a grad-

ual saturation at much higher shear rates (qP 103 s�1).

Table 1

Recent experimental studies in literature with which the present theory is compared

Data set Reference Polymer solution or melt M c

1 [19] Copolymers of para- and meta-phenylene-

1,3,4-oxadiazoles (weight part of

m-units ¼ 0:33) in sulfuric acid

25 000–33 000 0.00031 g cm�3

2 [19] Copolymers of para- and meta-phenylene-

1,3,4-oxadiazoles (weight part of

m-units ¼ 0:33) in sulfuric acid

25 000–33 000 0.0005 g cm�3

3 [20] Poly(methylmethacrylate) in toluene 10 600 000 2 wt:%
4 [20] Poly(methylmethacrylate) in toluene 19 200 000 2 wt:%

5 [20] Poly(methylmethacrylate) in N,N-

dimethylformamide

10 600 000 2 wt:%

6 [20] Poly(methylmethacrylate) in N,N-

dimethylformamide

19 200 000 2 wt:%

7 [18] Linear metallocene linear low density

polyethylene (LLDPE) (melt)

100 000 –

8 [18] 20% Linear metallocene LLDPEþ 80%

long chain-branched metallocene LLDPE

(melt)

100 000 –

9 [18] Long chain-branched metallocene

LLDPE (melt)

100 000 –
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